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Abstract. Properties of the magnetic translation operators for a charged particle moving in
a crystalline potential and a uniform magnetic field show that it is necessary to considerall
inequivalent irreducible projective representations of the crystal lattice translation group. These
considerations lead to the concept of magnetic cells and indicate the periodicity of physical
properties with respect to the charge. It is also proven that a direct product of such representations
describes a system of two (many, in general) particles. Therefore, they can be applied in a description
of interacting electrons in a magnetic field, for example in the fractional quantum Hall effect.

1. Introduction

The magnetic translation operators

T (R) = exp

[
− i

h̄
R ·

(
p− e

c
A

)]
introduced by Brown (1964), to describe the movement of a Bloch electron in an external
magnetic field, form in fact a projective (ray) representation of the translation group with a
factor system (Brown 1964, Zak 1964a, b)

T (R)T (R′)[T (R +R′)]−1 = m(R,R′) = exp

[
−1

2

ie

ch̄
(R×R′) ·H

]
whereH = ∇ × A. This is only one of many applications of projective representations,
firstly investigated by Schur (1904, 1907, 1911), in quantum physics. However, its clarity
and importance led Backhouse and Bradley to start their series of articles on projective
representations with this example (Backhouse and Bradley 1970, Backhouse 1970, 1971,
Backhouse and Bradley 1972). Another important application is illustrated by the construction
of space groups (Altmann 1977); however, in this case one considers projective representations
of the point group (see also Bradley and Cracknell 1972).

The other—equivalent—description of Bloch electrons in a magnetic field was proposed
by Zak (1964a, b) and applied, e.g., by Divakaran and Rajagopal (1995) and the author (Florek
1994, 1996a, b). This approach consists in the introduction of a covering group and investig-
ations of its ordinary, i.e. vector, representations (see also Altmann 1977, 1986). The covering
group contains pairs(α,R),α ∈ U(1), and its vector representation can be written as a product
0(α)T (R), where0 is a representation of U(1) andT is a projective representation of the
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translation group (Zak 1964a, Altmann 1977, Florek 1994). Zak rejected representations with
0(α) 6= α as ‘non-physical’ (Zak 1964b). However, ifT ′ is a projective representation with
a factor system0(m(R,R′)), then the product0T ′ is a vector representation of the covering
group and there are no rules that are contravened by considering this case. The first attempt to
considerall representations was performed within Zak’s approach by the author (Florek 1997a);
in that work, the physical consequences of taking into account all cases were indicated.

This paper is based on Brown’s approach; i.e. projective representations of the translation
group are considered. It is shown that all projective representations are necessary in a
description of the movement of a particle with the chargeqe, whereq is an integer, in a magnetic
field and a crystalline potential. Moreover, applying the results of earlier articles (Florek 1997b,
Florek and Wałcerz 1998), this is done for any vector potentialA (strictly speaking, forA a
linear function of the coordinates; however, by appropriate gauge transformation each vector
potential can be written in such a form for a constant, uniform magnetic field). This removes the
restriction imposed by Brown (1964) and Zak (1964a, b) onA of being a fully antisymmetric
function of the coordinates (i.e.∂Al/∂xk + ∂Ak/∂xl = 0 for each pairk, l = 1, 2, 3). More-
over, the proposed approach yields in a natural way the concept of magnetic cells (Zak 1964a,
b) and proves the periodicity of physical properties with respect to the charge, in addition to
the periodicity with respect to the magnitude of the magnetic field proven by Azbel (1963).
Since projective representations correspond to energy levels of one-particle states, their direct
products must describe two-particle states (or many-particle states in a more general case).
A system of two particles with the chargesqe andq ′e has the total charge(q + q ′)e and,
therefore, should correspond to a projective representation with a factor system determined by
this charge. It follows from the previous discussion that in a many-body problem one has to
consider all representations, including those considered by Zak as ‘non-physical’.

2. Periodicity with respect to charge

The Hamiltonian describing the motion of a charged particle in a periodic potentialV (r) and
an external magnetic fieldH = ∇×A is given as

H = 1

2m

(
p− qe

c
A

)2

+ V (r)

wherem denotes the effective particle mass,p its kinetic momentum, andqe, with q ∈ Z and
e > 0, its charge. If the vector potentialA is a linear function of the coordinates, i.e.

Aα =
∑
β

aαββ α, β = x, y, z

then the magnetic translation operators can be written as (Florek 1997b, Florek and Wałcerz
1998)

T (R) = exp

[
− i

h̄
R ·

(
p− qe

c
A′
)]

whereA′ is a vector potential associated withA, defined as

Aα =
∑
β

aβαβ.

It is well known (Brown 1964, Zak 1964a, b) that the periodic boundary conditions allow
us to consider a two-dimensional crystal lattice (in thexy-plane, say) andH = [0, 0, H ]
perpendicular to it. Hence, any lattice vector can be considered as two-dimensional:

R = n1a1 + n2a2.
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The magnetically periodic boundary conditions (Brown 1964) yield quantization of a magnetic
flux:

H · (a1× a2) = 2π

N

h̄c

e

L

q

where the integerL is mutually prime with the crystal periodN . Replacing the left-hand side
by the flux per the unit cell

φ = (e/hc)H · (a1× a2)

one obtains

Nφ = L

q
. (1)

The factor systemm(R,R′) depends onA: for example, the antisymmetric gauge
1
2(H × r) gives (Brown 1964, Zak 1964a, b)

m(R,R′) = ω(1/2)L(n2n
′
1−n1n

′
2)

N = ωL(n2n
′
1−n1n

′
2)

2N (2)

whereas for the Landau gaugeA = [0, Hx,0] (andA′ = [−Hy, 0, 0])

m
(L)
N (R,R′) = ωLn2n

′
1

N . (3)

In both formulae,ωN = exp(2π i/N). However, the group-theoretical commutator is gauge
independent, and for any linear gauge we have (Florek and Wałcerz 1998)

T (R)T (R′)T −1(R)T −1(R′) = ω−L(n1n
′
2−n2n

′
1)

N . (4)

The matrices of the irreducible projective representation corresponding to the factor system
given as (3) can be chosen as

DNL
ij (R) = δi,j−n2ω

Ln1i
N i, j = 0, 1, . . . , N − 1. (5)

It should be underlined that such a projective representation is normalized (cf. Altmann 1977,
1986, Florek and Wałcerz 1998), in contrast to those corresponding to the factor system (2)
and considered by Brown (1964).

If gcd(L,N) = ν > 1, the representations (5) are reducible and the corresponding factor
system is

m(l)n (R,R
′) = ωln2n

′
1

n (6)

wherel = L/ν, n = N/ν, and gcd(l, n) = 1. Irreducible projective representations with
such factors have to ben-dimensional, which directly leads to the concept ofmagnetic cells:
one obtainsDNL(nR) = 1, so themagnetic periodis equal ton, though thecrystal period
is still N . Therefore, theN × N lattice can be viewed as aν × ν lattice, with the translation
groupTν = Z2

ν , of n× n magnetic cells. Let(ξ1, ξ2) label magnetic cells, whereas(η1, η2) is
the position within a magnetic cell, i.e.ni = ηi + ξin. Then the matrices

D
nl,k
ij (R) = Dnl

ij (η1, η2)D
k(ξ1, ξ2) = δi,j−η2ω

lη1i
n Dk(ξ1, ξ2) (7)

form an irreducible projective representation ofZ2
N with the factor system (6), where

Dk(ξ1, ξ2) = exp[−2π i(k1ξ1 + k2ξ2)/ν] = ω−(k1ξ1+k2ξ2)
ν (8)

is an irreducible representation ofTν (Backhouse 1970). The character of the representation
given by (7) is

χn,l;k(R) = δη1,0δη2,0nω
−(k1ξ1+k2ξ2)
ν .

For givenn and l (i.e. for a given factor system), we obtain allν2 inequivalent irreducible
projective representations labelled byk (Altmann 1977, 1986), and all of them are normalized.



2526 W Florek

To determine a relation between the chargeq of a particle and the irreducible projective
representationDnl,k, let us fix the magnetic fluxφ and the crystal periodN . Then the cond-
ition (1) gives thatL = Nφq; i.e. L ∝ q. However, this is not a one-to-one relation,
sinceL is limited to the range 0, 1, . . . , N − 1 with no condition imposed onq ∈ Z. The
representation (5), its factor system (3), and the commutator (4) are determined byωLN , so
all of them are periodic functions ofL ∝ q, and, therefore, periodic functions with respect
to the charge of a moving particle. We see, in particular, that forq = zN , z ∈ Z, vector
representations with trivial factor systems (and trivial commutators) are obtained. This means
that for a given crystal periodN and constant magnetic field, a particle with the chargezNe

behaves as a non-charged one. It is also easy to see that for someq we can obtainL = lν,
whereν = gcd(N,L), and in this case the irreducible representationsDnl,k have to be used.
Sinceν is a co-divisor ofn, then assumingφ = 1/N we obtain

q = N l

n
(9)

which relates the pair(n, l) (the label of the irreducible representation) and the chargeq of a
particle. It has to be underlined that this relation has been derived for a fixedφ and does not
depend on the irreducible representationsDk of Tν given by (8).

3. Multi-particle states

It can be shown (see, for example, Altmann 1986) that a product of two projective rep-
resentationsD′ andD′′ of a given groupG with factor systemsm′ andm′′, respectively, is
another projective representation with a factor systemm(g, g′) = m′(g, g′)m′′(g, g′), which,
in general, is different from factor systemsm′ andm′′. LetD be a product of two irreducible
projective representationsDnl,k andDn′l′,k′ . Then their product has a factor system

m(R,R′) = ωLn2n
′
1

N with L = lν + l′ν ′ (10)

so it corresponds to the representationDNL,K (K has not been determined, but it depends on
the irreducibility of the representation obtained). The character of this representation is

χ(R) = δη1,0δη2,0δη′1,0δη
′
2,0nn

′ω−n(k1ξ1+k2ξ2)−n′(k′1ξ ′1+k′2ξ
′
2)

N

so it is non-zero only forni = xim, wherem = nn′/γ , γ = gcd(n, n′), 0 6 xi < µ =
N/m = gcd(ν, ν ′). Substitutingm andµ into the above formula, one obtains

χ(R) = δη1,0δη2,0mγω
−(k1+k′1)x1−(k2+k′2)x2
µ (modm). (11)

Sinceν/µ = n′/γ , thenL in (10) can be written as

L = µ
(
lν

µ
+
l′ν ′

µ

)
= µ

(
ln′

γ
+
l′n
γ

)
= µλ. (12)

It seems that this determines a factor systemm(λ)m . However, we cannot exclude the case in
which gcd(λ,m) = ` > 1. Therefore, the product considered has to be decomposed into
irreducible representations with a factor systemm(3)M , where3 = λ/` andM = m/`. The
scalar product of the appropriate characters gives us a multiplicity ofDM3,K in the product
considered, as follows:

f (DM,3;K,Dnl,k ⊗Dn′l′,k′) = γ

`
δK1,k1+k′1δK2,k2+k′2. (13)

There arè 2 such representations withKi = (ki + k′i ) modµ.
The most interesting is the case in whichn = n′ andl = l′, sincen andl are determined

by the magnetic flux, the charge, and the crystal periodN ; hence such a case can be interpreted
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as a system of two identical particles moving in the same lattice and the same magnetic field
(Florek 1997a). The resultant representation isn2-dimensional and its character is equal to

χ(R) = δn1,x1nδn2,x2nn
2ω
−(k1+k′1)x1−(k2+k′2)x2
ν

with 06 ki, k′i , xi < ν. The factor system is given by (10) as

m(R,R′) = ω2ln2n
′
1

n = ωλn2n
′
1

n

so we have to check the gcd(λ, n). At this point, the cases of odd and evenn have to be
considered separately. In the first, case` = gcd(n, 2l) = 1, and the representation obtained
decomposes inton copies of the representationDn2l,K with Ki = (ki + k′i ) modν. In the
second case, however,` = 2 andM = 1

2n, so the product considered decomposes into the
representationsD(1/2)nl,K : there are four representations withKi = (ki + k′i ) modν and each
of them appears12n times. In both cases we have

2l

n
= l

(n/2)
= 2

l

n

so the new representations correspond to a system with the charge 2q; see (9). However, an
evenn in the second case yields the change of magnetic periodicity fromn to 1

2n and four

times as many magnetic cells. In a similar way, the coupling ofd representationsDn1,k(j) ,
j = 1, 2, . . . , d with n = dM, changes the magnetic period fromn to M (and yieldsd2

times as many magnetic cells)—however, not by modification of the magnetic field, but by
multiplication of the charge byd.

The irreducible representations (7) are written as a product of a one-dimensional irred-
ucible representationDk of Tν , equation (8), and a projective one ofTn. This means that
products of such representations can also be separated into a part describing addition of the
quasi-momentak, k′ with the second part corresponding to the addition of co-divisorsν and
ν ′ or, more precisely,lν + lν ′; see (10). However, the last addition can change the magnetic
periodicity, determined byM and3 in (12) and (13), in a way depending on the arithmetic
structure ofN , n, n′, l, andl′. In the above example, the labelM (the size of the magnetic
cells) of the resultant representation was equal to or smaller thann = n′. One can easily obtain
that forN = 12

D3,1;[1,0] ⊗D6,1;[1,0] =
⊕

K1,K2=0,2,4

D2,1;[K1,K2] .

In this case one particle may have charge 4e and the second 2e, so the two-particle system
has the charge 6e. We must say ‘may have’ since condition (1) involves both the magnetic
flux φ and the chargeq. The chosen values of the charges correspond to the fixedφ = 1/N .
Therefore, the charge of the first particle yields 3×3 magnetic cells, and the second one 6×6,
whereas the two-particle system demands 2× 2 magnetic cells. On the other hand we have
(N = 12, as above)

D3,1;[1,0] ⊗D4,1;[1,0] = D12,7;[0,0]

soM > n, n′ and there is only one magnetic cell. Therefore, the addition of quasi-momenta
k, k′ has to be modified to reflect all possible changes of the magnetic periodicity.

4. Final remarks and conclusions

The projective representations used by Brown (1964) and in this paper can be replaced in
an equivalent approach by using vector representations of central extensions (Zak 1964a, b,
Florek 1994, 1996a, b). Zak assumed that a factorω has to be represented by itself, and rejected
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representations in whichω is represented byωr . However, as long asr is mutually prime with
N , such a change is an isomorphism of (inequivalent) central extensions (Altmann 1977, Florek
1994). Within the approach presented here, this fact is realized by the freedom that one has in
choosing the relation between the chargeq and the indexl, given by (9). Forq = 1, we can
take not onlyL = 1 but also anyr mutually prime withn. All important properties, e.g. the
addition of charges and charge periodicity, are unaffected: since gcd(r, n) = 1, then

{r, 2r, . . . , Nr} = {1, 2, . . . , n}
but elements of the first set are obtained in a different order (zr is calculated modn). In
physical terms, this means that if we observe only magnetic or charge periodicity, we cannot
distinguishH1 = 2πh̄c/Ne fromHr = rH if gcd(r, N) = 1; see (1) and (9). In fact, it should
be said that condition (1) is not imposed onH or q but on their productqH , and has to be
written as

qH = 2π

N

h̄c

e
L or qφ = L

N
. (14)

This means that a particle with the charge 2e can be described by the same representation
DNL as a particle with the chargee if the magnetic field is halved. On the other hand, very
strong magnetic fields may lead to observation of a fractional charge, if the productqH has to
satisfy (14).

The introduction of projective representations in this paper has been based on the magnetic
translation operators determined by Brown (1964), and the notion of Bloch electrons in an
external magnetic field was used throughout this work. Hence, the concept of magnetic
cells has appeared in a natural way. However, these representations can be applied to any
problem in quantum mechanics in which a symmetry groupG appears and phase factors
play an important role. For example, Divakaran and Rajagopal (1991) used them in the
theory of superconducting layered materials (they also included many general remarks in
their work). If we assume that projective representations correspond to energy levels (and
so representation vectors correspond to states) of a one-particle system, then products of two
(or more) representations have to correspond to two-particle (or many-particle, in a general
case) systems. Not straying far from the physical problems discussed above, we can look at a
two-dimensional electron gas in an external magnetic field. The fractional quantum Hall effect
(Tsuiet al 1982, Das Sarma and Pinczuk 1997) is still a subject to which much effort is being
devoted by theorists and experimentalists, but it has been accepted that Coulomb interactions
play a very important role in the explanation of the observed features (Shankar and Murthy
1997, Heinonen 1998). Therefore, it seems possible to apply the results presented above to
such problems.

It should be underlined that products ofprojective representations are well known in
mathematics (Backhouse and Bradley 1972, Altmann 1986). On the other hand, products of
vectorrepresentations are commonly used in quantum physics to describe multi-particle states.
It is shown in this paper thatproducts of projectiverepresentations also have to be applied in
many-body problems.
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